Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Chemical Engineering Journal ; 445(58), 2022.
Article in English | CAB Abstracts | ID: covidwho-2252165

ABSTRACT

Facile and sensitive analysis methods for pharmaceutical contaminants in aqueous environment are of vital importance for water safety, especially when large amounts of anti-viral drugs are being used, discharged and accumulated. In this work, we used functional metal-organic framework (MOF) as high-performance adsorbent for selective enrichment of such pharmaceutical contaminants in aqueous samples. The MOF was synthesized via a new synthesis method previously developed by our group and immobilized on paper membrane to be used in solid-phase extraction (SPE) device. Different metal ions were anchored by MOF to screen out the adsorbent with the best affinity. The targets were a potential anti-COVID-19 drug favipiravir, and its structural and functional analogues (ingredients or intermediates, other anti-viral drugs). To deeply understand the adsorption mechanisms, quantum calculation and computational fluid dynamics (CFD) simulation were both applied. The experimental and in-silico results together demonstrated that the as-prepared MOF adsorbent possessed high affinity and fast dynamics. The established SPE-based liquid chromatography (LC) method worked well in the range of 10-1000 ng/mL, with only 3 mg of adsorbent per device and 5 mL sample needed, and no mass spectrometer (MS) included, which was very efficient compared to commercial adsorbents. The results met the current detection needs in the application scenario, and inspirable for later design of well-behaved adsorbents.

2.
Colloids Surf A Physicochem Eng Asp ; 656: 130393, 2023 Jan 05.
Article in English | MEDLINE | ID: covidwho-2245876

ABSTRACT

The consumption of famciclovir (FCV) has been increased dramatically since the outbreak of coronavirus in 2019, and the pollution and harm of FCV in waters are concerned. Here, by utilizing aryl halides on 2, 4, 6-tris(4-bromophenyl)- 1, 3, 5-triazine (BPT) and primary amine groups on benzidine (BZ), a novel conjugated microporous polymer, namely BPT-BZ-CMP, was synthesized by Buchwald-Hartwig coupling reaction and applied in the removal of FCV from aqueous solution firstly. The synthesized BPT-BZ-CMP were characterized by various methods, including FTIR, SEM, BET, and Zeta-potential. Due to the micropore structure and high specific surface area, it took only 30 min for BPT-BZ-CMP to adsorb FCV to reach an equilibrium, and the maximum adsorption capacity was 347.8 mg·g-1. The Liu and pseudo-second-order kinetic models properly fit the adsorption equilibrium and kinetic data, respectively. The adsorption process was a spontaneous process, and the hydrogen bonding, π-π interaction and C-H···π interaction enhanced the adsorption of FCV on BPT-BZ-CMP. BPT-BZ-CMP maintained a good adsorption capacity after four consecutive adsorption-desorption cycle experiments. This study confirmed the potential of BPT-BZ-CMP as efficient sorbent to remove FCV from aqueous solutions.

3.
Chemical Engineering Journal ; : 136751, 2022.
Article in English | ScienceDirect | ID: covidwho-1819445

ABSTRACT

Facile and sensitive analysis methods for pharmaceutical contaminants in aqueous environment are of vital importance for water safety, especially when large amounts of anti-viral drugs are being used, discharged and accumulated. In this work, we used functional metal-organic framework (MOF) as high-performance adsorbent for selective enrichment of such pharmaceutical contaminants in aqueous samples. The MOF was synthesized via a new synthesis method previously developed by our group and immobilized on paper membrane to be used in solid-phase extraction (SPE) device. Different metal ions were anchored by MOF to screen out the adsorbent with the best affinity. The targets were a potential anti-COVID-19 drug favipiravir, and its structural and functional analogues (ingredients or intermediates, other anti-viral drugs). To deeply understand the adsorption mechanisms, quantum calculation and computational fluid dynamics (CFD) simulation were both applied. The experimental and in-silico results together demonstrated that the as-prepared MOF adsorbent possessed high affinity and fast dynamics. The established SPE-based liquid chromatography (LC) method worked well in the range of 10-1000 ng/mL, with only 3 mg of adsorbent per device and 5 mL sample needed, and no mass spectrometer (MS) included, which was very efficient compared to commercial adsorbents. The results met the current detection needs in the application scenario, and inspirable for later design of well-behaved adsorbents.

4.
Int J Antimicrob Agents ; 56(3): 106110, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-663165

ABSTRACT

The crude mortality rate in critical pneumonia cases with coronavirus disease 2019 (COVID-19) reaches 49%. This study aimed to test whether levels of blood urea nitrogen (BUN) in combination with D-dimer were predictors of in-hospital mortality in COVID-19 patients. The clinical characteristics of 305 COVID-19 patients were analysed and were compared between the survivor and non-survivor groups. Of the 305 patients, 85 (27.9%) died and 220 (72.1%) were discharged from hospital. Compared with discharged cases, non-survivor cases were older and their BUN and D-dimer levels were significantly higher (P < 0.0001). Least absolute shrinkage and selection operator (LASSO) and multivariable Cox regression analyses identified BUN and D-dimer levels as independent risk factors for poor prognosis. Kaplan-Meier analysis showed that elevated levels of BUN and D-dimer were associated with increased mortality (log-rank, P < 0.0001). The area under the curve for BUN combined with D-dimer was 0.94 (95% CI 0.90-0.97), with a sensitivity of 85% and specificity of 91%. Based on BUN and D-dimer levels on admission, a nomogram model was developed that showed good discrimination, with a concordance index of 0.94. Together, initial BUN and D-dimer levels were associated with mortality in COVID-19 patients. The combination of BUN ≥ 4.6 mmol/L and D-dimer ≥ 0.845 µg/mL appears to identify patients at high risk of in-hospital mortality, therefore it may prove to be a powerful risk assessment tool for severe COVID-19 patients.


Subject(s)
Betacoronavirus/pathogenicity , Blood Urea Nitrogen , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Fibrin Fibrinogen Degradation Products/metabolism , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Aged , Area Under Curve , Biomarkers/blood , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/virology , Female , Hospital Mortality , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/virology , Prognosis , Proportional Hazards Models , Retrospective Studies , Risk , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL